Learning Continuous Action Models in a Real-Time Strategy Environment
نویسندگان
چکیده
Although several researchers have integrated methods for reinforcement learning (RL) with case-based reasoning (CBR) to model continuous action spaces, existing integrations typically employ discrete approximations of these models. This limits the set of actions that can be modeled, and may lead to non-optimal solutions. We introduce the Continuous Action and State Space Learner (CASSL), an integrated RL/CBR algorithm that uses continuous models directly. Our empirical study shows that CASSL significantly outperforms two baseline approaches for selecting actions on a task from a real-time strategy gaming environment.
منابع مشابه
Learning Continuous Action Models in a Real-Time Strategy Envir
Although several researchers have integrated methods for reinforcement learning (RL) with case-based reasoning (CBR) to model continuous action spaces, existing integrations typically employ discrete approximations of these models. This limits the set of actions that can be modeled, and may lead to non-optimal solutions. We introduce the Continuous Action and State Space Learner (CASSL), an int...
متن کاملReinforcement Learning In Real-Time Strategy Games
We consider the problem of effective and automated decisionmaking in modern real-time strategy (RTS) games through the use of reinforcement learning techniques. RTS games constitute environments with large, high-dimensional and continuous state and action spaces with temporally-extended actions. To operate under such environments we propose Exlos, a stable, model-based MonteCarlo method. Contra...
متن کاملReal-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm
The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملOn-Line Learning of a Persian Spoken Dialogue System Using Real Training Data
The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008